Design and Analysis of the NIPS 2016 Review Process

Nihar B. Shah Behzad Tabibian Krikamol Muandet
Isabelle Guyon Ulrike von Luxburg

Neural Information Processing Systems (NIPS) is a top-tier annual conference in machine learning. The 2016 edition of the conference comprised more than 2,400 paper submissions, 3,000 reviewers, and 8,000 attendees, representing a growth of nearly 40% in terms of submissions, 96% in terms of reviewers, and over 100% in terms of attendees as compared to the previous year. In this report, we analyze several aspects of the data collected during the review process, including an experiment investigating the efficacy of collecting ordinal rankings from reviewers (vs. usual scores aka cardinal rankings). Our goal is to check the soundness of the review process we implemented and, in going so, provide insights that may be useful in the design of the review process of subsequent conferences. We introduce a number of metrics that could be used for monitoring improvements when new ideas are introduced.